LehrFEM++ 1.0.0
A simple Finite Element Library for teaching
|
Element Matrix Provider for the Laplace operator using picewise linear barycentric basis functions. More...
#include </home/nico/bildung/SemVI/thesis/lehrfempp/projects/hldo_sphere/assemble/laplace_matrix_provider.h>
Public Member Functions | |
LaplaceMatrixProvider () | |
Constructor. More... | |
Eigen::MatrixXd | Eval (const lf::mesh::Entity &entity) const |
Compute the element matrix for a given cell of a mesh. More... | |
bool | isActive (const lf::mesh::Entity &entity) const |
All entities are regarded as active. More... | |
Element Matrix Provider for the Laplace operator using picewise linear barycentric basis functions.
The element matrix provider works in a 3 dimensional world with 2 dimensional triangular cells.
The locally evaluated bilinear form is
\[ (u,v) \mapsto \int\limits_{K} \mathbf{grad}_{\Gamma}(u) \cdot \mathbf{grad}_{\Gamma}(v) dx \]
Where \( \mathbf{grad}_{\Gamma} \) denotes the tangential gradient on the triangle.
Details regarding the mathematical derivations can be found in the thesis Hodge-Laplacians and Dirac Operators on the Surface of the 3-Sphere
section 4.2.1.
Definition at line 43 of file laplace_matrix_provider.h.
|
inline |
Constructor.
Definition at line 48 of file laplace_matrix_provider.h.
Eigen::MatrixXd projects::hldo_sphere::assemble::LaplaceMatrixProvider::Eval | ( | const lf::mesh::Entity & | entity | ) | const |
Compute the element matrix for a given cell of a mesh.
entity | The mesh cell on which the element matrix will be computed |
Definition at line 11 of file laplace_matrix_provider.cc.
References lf::mesh::Entity::Geometry(), lf::geometry::Geometry::Global(), lf::uscalfe::FeLagrangeO1Tria< SCALAR >::GradientsReferenceShapeFunctions(), lf::base::RefEl::kTria(), lf::base::RefEl::NodeCoords(), lf::mesh::Entity::RefEl(), and lf::geometry::Volume().
|
inline |
All entities are regarded as active.
Definition at line 63 of file laplace_matrix_provider.h.