LehrFEM++ 1.0.0
A simple Finite Element Library for teaching
Public Member Functions | Private Attributes | List of all members
projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR > Class Template Reference

Decorator class around a ScalarReferenceFiniteElement to represent discontinuous shape functions. More...

Inheritance diagram for projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >:
lf::fe::ScalarReferenceFiniteElement< SCALAR >

Public Member Functions

 DiscontinuousScalarReferenceFiniteElement ()=default
 
 DiscontinuousScalarReferenceFiniteElement (const DiscontinuousScalarReferenceFiniteElement &)=delete
 
 DiscontinuousScalarReferenceFiniteElement (DiscontinuousScalarReferenceFiniteElement &&) noexcept=default
 
DiscontinuousScalarReferenceFiniteElementoperator= (const DiscontinuousScalarReferenceFiniteElement &)=delete
 
DiscontinuousScalarReferenceFiniteElementoperator= (DiscontinuousScalarReferenceFiniteElement &&) noexcept=default
 
 DiscontinuousScalarReferenceFiniteElement (std::shared_ptr< const lf::fe::ScalarReferenceFiniteElement< SCALAR > > cfe)
 
bool isInitialized () const
 Reports initialization status of the object. More...
 
lf::base::RefEl RefEl () const override
 Tells the type of reference cell underlying the parametric finite element. More...
 
unsigned Degree () const override
 Request the maximal polynomial degree of the basis functions in this finite element. More...
 
size_type NumRefShapeFunctions () const override
 Total number of reference shape functions associated with the reference cell. More...
 
size_type NumRefShapeFunctions (dim_t codim) const override
 
size_type NumRefShapeFunctions (dim_t codim, sub_idx_t) const override
 
Eigen::Matrix< SCALAR, Eigen::Dynamic, Eigen::Dynamic > EvalReferenceShapeFunctions (const Eigen::MatrixXd &local) const override
 Evaluation of all reference shape functions in a number of points. More...
 
Eigen::Matrix< SCALAR, Eigen::Dynamic, Eigen::Dynamic > GradientsReferenceShapeFunctions (const Eigen::MatrixXd &local) const override
 Computation of the gradients of all reference shape functions in a number of points. More...
 
Eigen::MatrixXd EvaluationNodes () const override
 Returns reference coordinates of "evaluation nodes" for evaluation of parametric degrees of freedom, nodal interpolation in the simplest case. More...
 
size_type NumEvaluationNodes () const override
 Tell the number of evaluation (interpolation) nodes. More...
 
Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > NodalValuesToDofs (const Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > &nodvals) const override
 Computes the linear combination of reference shape functions matching function values at evaluation nodes. More...
 
 ~DiscontinuousScalarReferenceFiniteElement () override=default
 
- Public Member Functions inherited from lf::fe::ScalarReferenceFiniteElement< SCALAR >
virtual ~ScalarReferenceFiniteElement ()=default
 
virtual base::RefEl RefEl () const =0
 Tells the type of reference cell underlying the parametric finite element. More...
 
virtual unsigned int Degree () const =0
 Request the maximal polynomial degree of the basis functions in this finite element. More...
 
dim_t Dimension () const
 Returns the spatial dimension of the reference cell. More...
 
virtual size_type NumRefShapeFunctions () const
 Total number of reference shape functions associated with the reference cell. More...
 
virtual size_type NumRefShapeFunctions (dim_t codim) const
 The number of interior reference shape functions for sub-entities of a particular co-dimension. More...
 
virtual size_type NumRefShapeFunctions (dim_t codim, sub_idx_t subidx) const =0
 The number of interior reference shape functions for every sub-entity. More...
 
virtual Eigen::Matrix< SCALAR, Eigen::Dynamic, Eigen::Dynamic > EvalReferenceShapeFunctions (const Eigen::MatrixXd &refcoords) const =0
 Evaluation of all reference shape functions in a number of points. More...
 
virtual Eigen::Matrix< SCALAR, Eigen::Dynamic, Eigen::Dynamic > GradientsReferenceShapeFunctions (const Eigen::MatrixXd &refcoords) const =0
 Computation of the gradients of all reference shape functions in a number of points. More...
 
virtual Eigen::MatrixXd EvaluationNodes () const =0
 Returns reference coordinates of "evaluation nodes" for evaluation of parametric degrees of freedom, nodal interpolation in the simplest case. More...
 
virtual size_type NumEvaluationNodes () const =0
 Tell the number of evaluation (interpolation) nodes. More...
 
virtual Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > NodalValuesToDofs (const Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > &nodvals) const
 Computes the linear combination of reference shape functions matching function values at evaluation nodes. More...
 

Private Attributes

std::shared_ptr< const lf::fe::ScalarReferenceFiniteElement< SCALAR > > cfe_
 

Additional Inherited Members

- Public Types inherited from lf::fe::ScalarReferenceFiniteElement< SCALAR >
using Scalar = SCALAR
 The underlying scalar type. More...
 
- Protected Member Functions inherited from lf::fe::ScalarReferenceFiniteElement< SCALAR >
 ScalarReferenceFiniteElement ()=default
 
 ScalarReferenceFiniteElement (const ScalarReferenceFiniteElement &)=default
 
 ScalarReferenceFiniteElement (ScalarReferenceFiniteElement &&) noexcept=default
 
ScalarReferenceFiniteElementoperator= (const ScalarReferenceFiniteElement &)=default
 
ScalarReferenceFiniteElementoperator= (ScalarReferenceFiniteElement &&) noexcept=default
 

Detailed Description

template<typename SCALAR>
class projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >

Decorator class around a ScalarReferenceFiniteElement to represent discontinuous shape functions.

Template Parameters
SCALARThe scalar type of the shape functions e.g. 'double'

The class decorates any lf::fe::ScalarReferenceFiniteElement and forwards most calls to the decorated instance. The exception are methods requesting the number of shape functions associated with certain codimensions or subentities. Here the class changes the underlying implementation and associates all shape functions to the underlying entity of codimension 0.

In particular this class is used to represent \(L^2(\Omega) \) conforming finite elements. Standard \( H^1(\Omega) \) Lagrangian finite elements fullfill some continuity constraints, since certain shape functions are associated with vertices or edges of the cells. These continuity constraints are broken, by considering all shape functions as interior.

Definition at line 42 of file discontinuous_scalar_reference_finite_element.h.

Constructor & Destructor Documentation

◆ DiscontinuousScalarReferenceFiniteElement() [1/4]

template<typename SCALAR >
projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::DiscontinuousScalarReferenceFiniteElement ( )
default

Default constructor, does not initialize this class (invalid state). If any method is called upon it, an error is thrown.

◆ DiscontinuousScalarReferenceFiniteElement() [2/4]

template<typename SCALAR >
projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::DiscontinuousScalarReferenceFiniteElement ( const DiscontinuousScalarReferenceFiniteElement< SCALAR > &  )
delete

◆ DiscontinuousScalarReferenceFiniteElement() [3/4]

template<typename SCALAR >
projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::DiscontinuousScalarReferenceFiniteElement ( DiscontinuousScalarReferenceFiniteElement< SCALAR > &&  )
defaultnoexcept

◆ DiscontinuousScalarReferenceFiniteElement() [4/4]

template<typename SCALAR >
projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::DiscontinuousScalarReferenceFiniteElement ( std::shared_ptr< const lf::fe::ScalarReferenceFiniteElement< SCALAR > >  cfe)
inlineexplicit

◆ ~DiscontinuousScalarReferenceFiniteElement()

virtual destructor

Member Function Documentation

◆ Degree()

template<typename SCALAR >
unsigned projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::Degree ( ) const
inlineoverridevirtual

◆ EvalReferenceShapeFunctions()

template<typename SCALAR >
Eigen::Matrix< SCALAR, Eigen::Dynamic, Eigen::Dynamic > projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::EvalReferenceShapeFunctions ( const Eigen::MatrixXd &  refcoords) const
inlineoverridevirtual

Evaluation of all reference shape functions in a number of points.

Parameters
refcoordscoordinates of N points in the reference cell passed as columns of a matrix of size dim x N, where dim is the dimension of the reference element, that is =0 for points, =1 for edges, =2 for triangles and quadrilaterals
Returns
An Eigen Matrix of size NumRefShapeFunctions() x refcoords.cols() which contains the shape functions evaluated at every quadrature point.

Concerning the numbering of local shape functions, please consult the documentation of lf::assemble::DofHandler or the documentation of the class.

Note
shape functions are assumed to be real-valued.

Example: Triangular Linear Lagrangian finite elements

There are three reference shape functions \(\hat{b}^1,\hat{b}^2,\hat{b}^3\) associated with the vertices of the reference triangle. Let us assume that the refcoords argument is a 2x2 matrix \([\mathbf{x}_1\;\mathbf{x}_2]\), which corresponds to passing the coordinates of two points in the reference triangle. Then this method will return a 3x2 matrix:

\[ \begin{pmatrix}\hat{b}^1(\mathbf{x}_1) & \hat{b}^1(\mathbf{x}_2) \\ \hat{b}^2(\mathbf{x}_1) & \hat{b}^2(\mathbf{x}_2) \\ \hat{b}^3(\mathbf{x}_1)\ & \hat{b}^3(\mathbf{x}_2) \end{pmatrix} \]

Implements lf::fe::ScalarReferenceFiniteElement< SCALAR >.

Definition at line 102 of file discontinuous_scalar_reference_finite_element.h.

References projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::cfe_, and projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::isInitialized().

◆ EvaluationNodes()

template<typename SCALAR >
Eigen::MatrixXd projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::EvaluationNodes ( ) const
inlineoverridevirtual

Returns reference coordinates of "evaluation nodes" for evaluation of parametric degrees of freedom, nodal interpolation in the simplest case.

Returns
A d x N matrix, where d is the dimension of the reference cell, and N the number of interpolation nodes. The columns of this matrix contain their reference coordinates.

Every parametric scalar finite element implicitly defines a local interpolation operator by duality with the reference shape functions. This interpolation operator can be realized through evaluations at certain evaluation nodes, which are provided by this method.

Unisolvence

The evaluation points must satisfy the following requirement: If the values of a function belonging to the span of the reference shape functions are known in the evaluation nodes, then this function is uniquely determined. This entails that the number of evaluation nodes must be at least as big as the number of reference shape functions.

Note
It is not required that any vector a values at evaluation nodes can be produced by a suitable linear combination of reference shape functions. For instance, this will not be possible, if there are more evaluation points than reference shape functions. If both sets have the same size, however, the interpolation problem has a solution for any vector of values at the evluation points.

Example: Principal lattice

For triangular Lagrangian finite elements of degree p the evaluation nodes, usually called "interpolation nodes" in this context, can be chosen as \(\left(\frac{j}{p},\frac{k}{p}\right),\; 0\leq j,k \leq p, j+k\leq p\).

Moment-based degrees of freedom

For some finite element spaces the interpolation functional may be defined based on integrals over edges. In this case the evaluation nodes will be quadrature nodes for the approximate evaluation of these integrals.

The quadrature rule must be exact for the polynomials contained in the local finite element spaces.

Implements lf::fe::ScalarReferenceFiniteElement< SCALAR >.

Definition at line 114 of file discontinuous_scalar_reference_finite_element.h.

References projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::cfe_, and projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::isInitialized().

◆ GradientsReferenceShapeFunctions()

template<typename SCALAR >
Eigen::Matrix< SCALAR, Eigen::Dynamic, Eigen::Dynamic > projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::GradientsReferenceShapeFunctions ( const Eigen::MatrixXd &  refcoords) const
inlineoverridevirtual

Computation of the gradients of all reference shape functions in a number of points.

Parameters
refcoordscoordinates of N points in the reference cell passed as columns of a matrix of size dim x N.
Returns
An Eigen Matrix of size NumRefShapeFunctions() x (dim * refcoords.cols()) where dim is the dimension of the reference finite element. The gradients are returned in chunks of rows of this matrix.

Concerning the numbering of local shape functions, please consult the documentation of lf::assemble::DofHandler.

Example: Triangular Linear Lagrangian finite elements

There are three reference shape functions \(\hat{b}^1,\hat{b}^2,\hat{b}^3\) associated with the vertices of the reference triangle. Let us assume that the refcoords argument is a 2x2 matrix \([\mathbf{x}_1\;\mathbf{x}_2]\), which corresponds to passing the coordinates of two points in the reference triangle. Then this method will return a 3x4 matrix:

\[ \begin{pmatrix} \grad^T\hat{b}^1(\mathbf{x}_1) & \grad^T\hat{b}^1(\mathbf{x}_2) \\ \grad^T\hat{b}^2(\mathbf{x}_1) & \grad^T\hat{b}^2(\mathbf{x}_2) \\ \grad^T\hat{b}^3(\mathbf{x}_1) & \grad^T\hat{b}^3(\mathbf{x}_2) \end{pmatrix} \]

Implements lf::fe::ScalarReferenceFiniteElement< SCALAR >.

Definition at line 108 of file discontinuous_scalar_reference_finite_element.h.

References projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::cfe_, and projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::isInitialized().

◆ isInitialized()

template<typename SCALAR >
bool projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::isInitialized ( ) const
inline

◆ NodalValuesToDofs()

template<typename SCALAR >
Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::NodalValuesToDofs ( const Eigen::Matrix< SCALAR, 1, Eigen::Dynamic > &  nodvals) const
inlineoverridevirtual

Computes the linear combination of reference shape functions matching function values at evaluation nodes.

Parameters
nodvalsrow vector of function values at evaluation nodes The length of this vector must agree with NumEvaluationNodes().
Returns
The coefficients of the local "nodal interpolant" with respect to the reference shape functions. This is a row vector of length NumRefShapeFunctions().

If the evaluation nodes are interpolation nodes, that is, if the set of reference shape functions forms a cardinal basis with respect to these nodes, then we have NumEvaluationNodes() == NumRefShapeFunctions() and the linear mapping realized by NodalValuesToDofs() is the identity mapping.

Note
default implementation is the identity mapping

Requirement: reproduction of local finite element functions

If the vector of values at the evaluation nodes agrees with a vector of function values of a linear combination of reference shape functions at the evaluation nodes, then this method must return the very coefficients of the linear combination.

Reimplemented from lf::fe::ScalarReferenceFiniteElement< SCALAR >.

Definition at line 124 of file discontinuous_scalar_reference_finite_element.h.

References projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::cfe_, and projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::isInitialized().

◆ NumEvaluationNodes()

template<typename SCALAR >
size_type projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::NumEvaluationNodes ( ) const
inlineoverridevirtual

◆ NumRefShapeFunctions() [1/3]

template<typename SCALAR >
size_type projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::NumRefShapeFunctions ( ) const
inlineoverridevirtual

Total number of reference shape functions associated with the reference cell.

Note
the total number of shape functions is the sum of the number of interior shape functions for all sub-entities and the entity itself.

Reimplemented from lf::fe::ScalarReferenceFiniteElement< SCALAR >.

Definition at line 81 of file discontinuous_scalar_reference_finite_element.h.

References projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::cfe_, and projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::isInitialized().

◆ NumRefShapeFunctions() [2/3]

template<typename SCALAR >
size_type projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::NumRefShapeFunctions ( dim_t  codim) const
inlineoverridevirtual

◆ NumRefShapeFunctions() [3/3]

template<typename SCALAR >
size_type projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::NumRefShapeFunctions ( dim_t  codim,
sub_idx_t   
) const
inlineoverridevirtual

◆ operator=() [1/2]

◆ operator=() [2/2]

◆ RefEl()

template<typename SCALAR >
lf::base::RefEl projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::RefEl ( ) const
inlineoverridevirtual

Member Data Documentation

◆ cfe_

template<typename SCALAR >
std::shared_ptr<const lf::fe::ScalarReferenceFiniteElement<SCALAR> > projects::dpg::DiscontinuousScalarReferenceFiniteElement< SCALAR >::cfe_
private

The documentation for this class was generated from the following file: