9#include <dirac_operator_experiment.h>
11using lf::uscalfe::operator-;
12using complex = std::complex<double>;
18int main(
int argc,
char *argv[]) {
19 if (argc != 4 && argc != 5) {
20 std::cerr <<
"Usage: " << argv[0]
21 <<
" max_refinement_level min_k max_k step=0.1 " << std::endl;
28 const unsigned refinement_level = atoi(argv[1]);
29 sscanf(argv[2],
"%lf", &min_k);
30 sscanf(argv[3],
"%lf", &max_k);
31 if (argc == 5) sscanf(argv[4],
"%lf", &step);
32 std::cout <<
"max_refinement_level : " << refinement_level << std::endl;
33 std::cout <<
"min_k : " << min_k <<
", max_k = " << max_k
34 <<
" step = " << step << std::endl;
39 std::vector<unsigned> refinement_levels(refinement_level + 1);
40 for (
int i = 0; i < refinement_level + 1; i++) {
41 refinement_levels[i] = i;
44 std::vector<double> ks;
45 for (
double i = min_k; i <= max_k; i += step) {
50 auto Power = [](complex a, complex b) -> complex {
return std::pow(a, b); };
51 auto Complex = [](
double a,
double b) -> complex {
return complex(a, b); };
52 auto Sin = [](complex a) -> complex {
return std::sin(a); };
53 auto Cos = [](complex a) -> complex {
return std::cos(a); };
54 auto Sqrt = [](complex a) -> complex {
return std::sqrt(a); };
57 auto f_zero = [&](
const Eigen::Vector3d &x_vec) -> complex {
59 Eigen::Vector3d x_ = x_vec;
65 complex ret = (x * z * Cos(x) + x * y * Cos(y) + y * z * Cos(z) +
66 2 * z * Sin(x) + 2 * x * Sin(y) + 2 * y * Sin(z)) /
67 (Power(x, 2) + Power(y, 2) + Power(z, 2));
72 auto f_one = [&](
const Eigen::Vector3d &x_vec) -> Eigen::VectorXcd {
74 Eigen::Vector3d x_ = x_vec;
80 Eigen::VectorXcd ret(3);
81 ret << (Complex(0, 1) * k *
82 (-(x * z * Sin(x)) + (Power(y, 2) + Power(z, 2)) * Sin(y) -
84 (Power(x, 2) + Power(y, 2) + Power(z, 2)),
86 (-(y * z * Sin(x)) - x * y * Sin(y) +
87 (Power(x, 2) + Power(z, 2)) * Sin(z))) /
88 (Power(x, 2) + Power(y, 2) + Power(z, 2)),
90 ((Power(x, 2) + Power(y, 2)) * Sin(x) -
91 z * (x * Sin(y) + y * Sin(z)))) /
92 (Power(x, 2) + Power(y, 2) + Power(z, 2));
97 auto f_two = [&](
const Eigen::Vector3d &x_vec) -> complex {
99 Eigen::Vector3d x_ = x_vec;
105 complex ret = (y * Cos(x) + z * Cos(y) + x * Cos(z)) /
106 Sqrt(Power(x, 2) + Power(y, 2) + Power(z, 2));
111 auto u_zero = [&](
const Eigen::Vector3d x_vec) -> complex {
113 Eigen::Vector3d x_ = x_vec;
122 auto u_one = [&](
const Eigen::Vector3d x_vec) -> Eigen::Vector3cd {
124 Eigen::Vector3d x_ = x_vec;
129 Eigen::VectorXcd ret(3);
132 ret << (-(x * z * Sin(x)) + (Power(y, 2) + Power(z, 2)) * Sin(y) -
134 (Power(x, 2) + Power(y, 2) + Power(z, 2)),
135 (-(y * z * Sin(x)) - x * y * Sin(y) +
136 (Power(x, 2) + Power(z, 2)) * Sin(z)) /
137 (Power(x, 2) + Power(y, 2) + Power(z, 2)),
138 ((Power(x, 2) + Power(y, 2)) * Sin(x) - z * (x * Sin(y) + y * Sin(z))) /
139 (Power(x, 2) + Power(y, 2) + Power(z, 2));
144 auto u_two = [&](
const Eigen::Vector3d x_vec) -> complex {
146 Eigen::Vector3d x_ = x_vec;
155 u_zero, u_one, u_two, f_zero, f_one, f_two, k,
"debug_only_one");
157 experiment.Compute(refinement_levels, ks);
Creates and solves the discretised Dirac Operator source problems for a given list of levels and valu...